For the CLD6000 Legal Text Analysis project, we need a highly coordinated approach across multiple AI systems. Here's my analysis:
# Current Challenge:
LegalTextAnalysis/
├── Multiple AI inputs
│ ├── Code analysis (Claude 1)
│ ├── Documentation (Claude 2)
│ └── Architecture (GPT)
└── Synchronization points needed
# Proposed Enhancement:
class AIWorkflowManager:
"""Centralized workflow management"""
def __init__(self):
self.notion_base = "Legal Text Analysis Project"
self.obsidian_vault = "CLD6000 Documentation"
def coordinate_ai_responses(self):
"""Synchronize AI inputs"""
# MCP database as source of truth
# Notion for prompt management
# Obsidian for technical documentation
For our specific project, I recommend:
a) Primary Workflow:
graph TD
A[Claude 1: NLP Pipeline Code] -->|Code Review| B[GPT Pro: Architecture]
B -->|Implementation| C[Claude 2: Documentation]
C -->|Assessment| D[GPT Enterprise: Integration]
D -->|MCP Database| A
b) Documentation Structure:
Obsidian/CLD6000/
├── NLP_Pipeline/
│ ├── feature_engineering.md
│ └── text_processing.md
├── Assessment/
│ ├── weekly_progress.md
│ └── final_report.md
└── Integration/
├── mcp_setup.md
└── database_schema.md
Would you like me to:
This approach ensures we maintain clear documentation while leveraging multiple AI systems effectively.