I'll analyze this step by step with more technical details while keeping our assessment requirements in mind.
[Detailed Technical Implementation Guide]
# /scripts/utils/central_logger.py
from pathlib import Path
import logging
from datetime import datetime
class CentralLogger:
"""Unified logging system for Legal Text Analysis"""
def __init__(self, name: str, log_dir: str = "logs"):
self.log_dir = Path(log_dir)
self.log_dir.mkdir(exist_ok=True)
# Create component-specific logger
self.logger = logging.getLogger(name)
self.logger.setLevel(logging.INFO)
# Add handlers
file_handler = logging.FileHandler(
self.log_dir / f"{name}_{datetime.now():%Y%m%d}.log"
)
console_handler = logging.StreamHandler()
# Configure format
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
self.logger.addHandler(file_handler)
self.logger.addHandler(console_handler)
# /scripts/utils/db_manager.py
import sqlite3
from contextlib import contextmanager
from typing import Optional
class MCPDatabaseManager:
"""MCP-integrated database operations manager"""
def __init__(self, db_path: str, logger: CentralLogger):
self.db_path = db_path
self.logger = logger
@contextmanager
def get_connection(self):
"""Create MCP-compatible database connection"""
conn = None
try:
conn = sqlite3.connect(self.db_path)
conn.row_factory = sqlite3.Row
yield conn
conn.commit()
except Exception as e:
self.logger.error(f"Database error: {str(e)}")
if conn:
conn.rollback()
raise
finally:
if conn:
conn.close()
# /scripts/pipeline/text_processor.py
from typing import Dict, Any
import spacy
from pathlib import Path
class TextProcessor:
"""Core NLP processing with MCP integration"""
def __init__(self,
db_manager: MCPDatabaseManager,
logger: CentralLogger):
self.db = db_manager
self.logger = logger
self.nlp = spacy.load("en_core_web_sm")
def process_text(self, text: str) -> Dict[str, Any]:
"""Process text and extract features"""
try:
doc = self.nlp(text)
features = self._extract_features(doc)
self._store_features(features)
return features
except Exception as e:
self.logger.error(f"Processing error: {str(e)}")
raise
# /tests/test_pipeline.py
import unittest
from pathlib import Path
class TestLegalTextPipeline(unittest.TestCase):
"""Integration tests for the complete pipeline"""
def setUp(self):
self.logger = CentralLogger("test")
self.db = MCPDatabaseManager("test.db", self.logger)
self.processor = TextProcessor(self.db, self.logger)
def test_end_to_end_processing(self):
"""Test complete processing chain"""
sample_text = "This is a legal document..."
results = self.processor.process_text(sample_text)
self.assertIn('features', results)
Would you like me to detail:
This implementation ensures modular components that align with our assessment requirements while maintaining clear separation of concerns.