Step-by-Step Instructions for Legal Text Analysis Project Updates

Directory Structure Setup

First, create a backup of the current working files:

# In project root
mkdir -p backups/$(date +%Y%m%d)
cp scripts/utils/db_utils.py backups/$(date +%Y%m%d)/
cp scripts/pipeline/text_processor.py backups/$(date +%Y%m%d)/
cp scripts/utils/preprocessing_logger.py backups/$(date +%Y%m%d)/

1. Logging System Implementation

Step 1: Create Enhanced Logger

# scripts/utils/central_logger.py

import logging
from pathlib import Path
from typing import Optional
from datetime import datetime

class LoggerManager:
    """Centralized logging management system"""

    _instance = None
    _loggers = {}

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super(LoggerManager, cls).__new__(cls)
            cls._instance._setup_base_config()
        return cls._instance

    def _setup_base_config(self):
        """Configure base logging settings"""
        self.log_dir = Path("logs")
        self.log_dir.mkdir(exist_ok=True)

        # Base configuration
        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        )

    def get_logger(self, name: str) -> logging.Logger:
        """Get or create a logger with specified name"""
        if name not in self._loggers:
            logger = logging.getLogger(name)
            self._setup_logger(logger, name)
            self._loggers[name] = logger
        return self._loggers[name]

    def _setup_logger(self, logger: logging.Logger, name: str):
        """Setup individual logger configuration"""
        # Create file handler
        log_file = self.log_dir / f"{name}_{datetime.now():%Y%m%d}.log"
        handler = logging.FileHandler(log_file)

        # Create formatter
        formatter = logging.Formatter(
            '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        )
        handler.setFormatter(formatter)

        # Add handler to logger
        logger.addHandler(handler)

# Global instance
logger_manager = LoggerManager()

2. Database Management Implementation

Step 1: Create Enhanced Database Manager

# scripts/utils/db_manager.py

import sqlite3
from typing import Optional, Dict, Any
from contextlib import contextmanager
from central_logger import logger_manager

class DatabaseManager:
    """Enhanced database management with improved error handling"""

    def __init__(self, db_path: str):
        self.db_path = db_path
        self.logger = logger_manager.get_logger('database')

    @contextmanager
    def get_connection(self):
        """Context manager for database connections"""
        conn = None
        try:
            conn = sqlite3.connect(self.db_path)
            conn.row_factory = sqlite3.Row
            yield conn
        except Exception as e:
            self.logger.error(f"Database connection error: {str(e)}")
            raise
        finally:
            if conn:
                conn.close()

    def execute_query(self, query: str, params: tuple = ()) -> list:
        """Execute a query and return results"""
        try:
            with self.get_connection() as conn:
                cursor = conn.execute(query, params)
                return [dict(row) for row in cursor.fetchall()]
        except Exception as e:
            self.logger.error(f"Query execution failed: {str(e)}")
            raise

3. Text Processor Implementation

Step 1: Create Enhanced Text Processor

# scripts/pipeline/text_processor.py

from typing import Dict, Any, List
from db_manager import DatabaseManager
from central_logger import logger_manager
import re

class TextProcessor:
    """Enhanced text processing pipeline"""

    def __init__(self, db_manager: DatabaseManager):
        self.db_manager = db_manager
        self.logger = logger_manager.get_logger('text_processor')

    def process_document(self, text: str) -> Dict[str, Any]:
        """Process a single document"""
        try:
            # Extract features
            features = self._extract_features(text)

            # Calculate metrics
            metrics = self._calculate_metrics(features)

            # Log processing completion
            self.logger.info(f"Document processed successfully: {len(features)} features extracted")

            return {
                'features': features,
                'metrics': metrics
            }
        except Exception as e:
            self.logger.error(f"Document processing failed: {str(e)}")
            raise

    def _extract_features(self, text: str) -> Dict[str, Any]:
        """Extract features from text"""
        return {
            'length': len(text),
            'word_count': len(text.split()),
            'sentence_count': len(re.findall(r'[.!?]+', text))
        }

    def _calculate_metrics(self, features: Dict[str, Any]) -> Dict[str, float]:
        """Calculate metrics from features"""
        try:
            return {
                'avg_word_length': features['length'] / features['word_count'] if features['word_count'] > 0 else 0,
                'avg_sentence_length': features['word_count'] / features['sentence_count'] if features['sentence_count'] > 0 else 0
            }
        except Exception as e:
            self.logger.error(f"Metrics calculation failed: {str(e)}")
            raise

Testing Implementation

Step 1: Create Test Suite

# tests/test_text_processor.py

import unittest
from scripts.pipeline.text_processor import TextProcessor
from scripts.utils.db_manager import DatabaseManager

class TestTextProcessor(unittest.TestCase):
    def setUp(self):
        self.db_manager = DatabaseManager(':memory:')
        self.processor = TextProcessor(self.db_manager)

    def test_process_document(self):
        text = "This is a test document. It has two sentences."
        result = self.processor.process_document(text)

        self.assertIn('features', result)
        self.assertIn('metrics', result)
        self.assertEqual(result['features']['sentence_count'], 2)

Jupyter Notebook Integration

Step 1: Update Notebook Code

# current/analysis_notebook.ipynb

from scripts.utils.db_manager import DatabaseManager
from scripts.pipeline.text_processor import TextProcessor
from scripts.utils.central_logger import logger_manager

# Initialize components
db_manager = DatabaseManager('path/to/database.db')
processor = TextProcessor(db_manager)
logger = logger_manager.get_logger('notebook')

# Process documents
try:
    # Your analysis code here
    results = processor.process_document(text)

    # Log results
    logger.info(f"Analysis completed successfully")
except Exception as e:
    logger.error(f"Analysis failed: {str(e)}")